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Abstract. A set of semi-continuous model Boltzmann equations governing the evolution of a
three-component gas mixture is presented. The third species is treated as an excited state of the
second species. The model takes into account collisional excitation and de-excitation processes
as well as the interaction with monochromatic photons. A kinetic equation for photons is coupled
with the model Boltzmann equations. Conservation properties are established and an H-theorem
is proven. Numerical solutions to simple test cases are provided.

1. Introduction

The standard formulation of the Boltzmann equation [1] describes the evolution of gas particles
without internal degrees of freedom. Such internal energy levels, however, play an important
role in the field of radiation gas dynamics [2]. In recent years, a kinetic model [3] has been
presented to describe the dynamics of a gas comprised of two-level atoms interacting with
the radiation field of monochromatic photons. The interaction of the photons with the gas
particles is described by means of Einstein coefficients. To establish a consistent kinetic
model, in addition, inelastic scattering processes are included in the formalism of Boltzmann-
like transport equations.

In a recent paper [4], Garibotti and Spiga consider a kinetic model for a three-species gas
mixture, where the third species is an excited state of the second. This model takes into account
only inelastic excitation and de-excitation phenomena. Since it is applied to the transport of
electrons and neutrons in a background medium, elastic collision terms are neglected. In a
radiation gas dynamics application, however, such terms are essential to drive the gas towards
kinetic equilibrium.

By combining aspects of both models, one obtains kinetic equations describing the
interaction of a three-species gas mixture with photons triggering transitions between the
second and the third species. Such a situation is typical for a laser induced thermal acoustics
(LITA) experiment [5], where photons (supplied by a strong coherent laser pulse) excite high-
frequency acoustic waves.

In this scenario, the internal energy gap can be orders of magnitudes greater than the mean
kinetic energy of the gas particles. Therefore, deviations of the distribution functions from local
Maxwellians due to de-excitation processes are to be expected. Nevertheless, the evolution
of the gas mixture is usually described by means of linearized fluid-dynamic equations [6].
Recently, a kinetic approach to LITA experiments has been presented in the framework of
discrete kinetic theory [7].

The aim of this paper is to establish a consistent semi-continuous kinetic model for the
description of LITA experiments. This model will include elastic and inelastic scattering terms
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as well as the interaction with a radiation field. Semi-continuous models [8,9] are obtained by
discretizing the speed variable leaving a continuum of possible directions. They are closer to
physical reality than discrete velocity models, where only a finite set of different velocities is
accounted for [10].

The great advantage of the semi-continuous approach is that collision terms typically
contain only sums of integrals over compact domains (parts of the unit sphere). In numerical
implementations, these integrals can be treated, e.g. by resorting to an expansion of the
distribution functions in terms of spherical harmonics.

The paper is organized as follows. After stating the appropriate continuous kinetic
equations in section 2, we provide the semi-continuous kinetic model in section 3. In section 4
we show the conservation laws as well as an H-theorem by investigating the collision terms.
Finally, in section 5 we present some numerical results on the evolution of the distribution
functions under the impact of a strong laser pulse.

2. Continuous kinetic equations

In this section we provide kinetic equations for a gas mixture composed of three species, namely
A, B and B∗, where B∗ is an excited state of B. The energy gap between B∗ and B is denoted
by �E > 0. We consider all elastic scattering processes of the form N + M � N + M for
N,M = A,B,B∗ as well as the inelastic interaction (collisional excitation and de-excitation)

A + B � A + B∗. (1)

Furthermore, we assume that transitions between B and its excited state B∗ can also be induced
by monochromatic photons. Therefore, we include the reactions

B + p � B∗ B∗ + p → B + 2p (2)

where p denotes a photon with frequency ν = �E/h, (where h is Planck’s constant).
By assuming equal mass m of the three species, we express the conservation of energy E

and momentum R by binary collisions as

2E/m = v′2 + v′2
∗ = v2 + v2

∗ ∓ ε2 (3)

R/m = v′Ω̂′ + v′
∗Ω̂

′
∗ = vΩ̂ + v∗Ω̂∗ (4)

where, for the purpose of discretization, we have resorted to a polar decomposition of the
velocity variables, v = vΩ̂ with v = |v| and the unit vector Ω̂ = v/v. Primed symbols refer
to post-collisional quantities. The quantity ε equals zero for elastic collisions and is linked
with the energy gap �E by

�E = m

2
ε2 (5)

for inelastic collisions. The minus sign in equation (3) refers to an excitation event and the
plus sign to a de-excitation event.

We express the post-collisional velocities by means of the sum of the pre-collisional
velocities and the unit vector n̂′ pointing in the direction of the relative velocity g′ = v′ − v′

∗
after collision:

v′ = R

2m
+

g′

2
n̂′ v′

∗ = R

2m
− g′

2
n̂′ (6)

where the relative speed after collision is given by g′ = g± =
√
g2 ± 2ε2 in the case of

inelastic collisions and by g′ = g in the case of elastic collisions. If the post-collisional
velocity v′ results from an (de-)excitation event, we will denote it by (v+) v−. The functions
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f ≡ f A, f̌ ≡ f B and f̂ ≡ f B∗
describe the phase density of the particles A, B and B∗,

respectively. According to [4], the inelastic collision terms read

J [f, f̂ , f̌ ] =
∫

R3
dv∗

∫
S2

dn̂′ gσ̌ (g, γ )[f (v+)f̌ (v+
∗ ) − f (v)f̂ (v∗)]

+
∫

R3
dv∗

∫
S2

dn̂′ gσ̂ (g, γ )[f (v−)f̂ (v−
∗ ) − f (v)f̌ (v∗)] (7a)

J̌ [f, f̂ , f̌ ] =
∫

R3
dv∗

∫
S2

dn̂′ gσ̂ (g, γ )[f̂ (v−)f (v−
∗ ) − f̌ (v)f (v∗)] (7b)

Ĵ [f, f̂ , f̌ ] =
∫

R3
dv∗

∫
S2

dn̂′ gσ̌ (g, γ )[f̌ (v+)f (v+
∗ ) − f̂ (v)f (v∗)] (7c)

with cos γ = n̂ · n̂′. The microreversibility condition [4] linking the up (σ̂ ) and down (σ̌ )
scattering cross section is given by

g2σ̂ (g, γ ) = �(g −
√

2ε)(g−)2σ̌ (g−, γ ) and g2σ̌ (g, γ ) = (g+)2σ̂ (g+, γ ) (8)

where� is the unit step function. The collision terms describing the impact of elastic scattering
between particles N and M on the evolution of N are of the form

JNM =
∫

R3
dv∗

∫
S2

dn̂′ gσ(g, γ )[f N(v′)f M(v′
∗) − f N(v)f M(v∗)] (9)

with the elastic cross section σ . These terms constitute the right-hand side of the continuous
Boltzmann equations of the model

∂f

∂t
+ vΩ̂ · ∂f

∂x
= J + JAA + JAB + JAB∗

(10a)

∂f̌

∂t
+ vΩ̂ · ∂f̌

∂x
= J̌ − R(I ) + JBB + JBA + JBB∗

(10b)

∂f̂

∂t
+ vΩ̂ · ∂f̂

∂x
= Ĵ + R(I ) + JB∗B∗

+ JB∗A + JB∗B. (10c)

The interaction with monochromatic photons of intensity I is modelled by means of Einstein
coefficients α (for spontaneous emission) and β (for absorption and stimulated emission).
Neglecting the Doppler effect, the photon–particle interaction term reads

R(I ) =
∫

S2
dΩ̂∗(βI (Ω̂∗)f̌ (v) − (α + βI (Ω̂∗))f̂ (v)) (11)

where I denotes the specific intensity of photons with energy �E. The evolution equation for
the specific intensity I (t,x, Ω̂) is given by [2]

∂I

∂t
+ cΩ̂ · ∂I

∂x
= ∂IL

∂t
− c�E

∫
R3

dv(βI f̌ (v) − (α + βI)f̂ (v)) (12)

where c stands for the speed of light and IL(t,x, Ω̂) is the intensity profile of the light sources.
The energy density eν , the energy flux Qν , and the energy density SL of the light source are
respectively defined by

eν = 1

c

∫
S2

I (Ω̂) dΩ̂ Qν =
∫

S2
Ω̂I (Ω̂) dΩ̂ SL = 1

c

∫
S2

IL(Ω̂) dΩ̂. (13)

The conservation of mass, momentum and energy as well as an H-theorem for the inelastic
collision terms of the above sketched model are provided in [4]. A derivation of Planck’s law
of radiation and an H-function for the photon transport equation can be found in [3].
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3. Semi-continuous kinetic model

The kinetic equations describing the evolution of the gas mixture and the photon intensity
are constituted by equations (10a)–(10c) and (12). In order to discretize them, we apply a
generalized form of the procedure introduced by Preziosi and Longo. In [9], the authors derive
semi-continuous kinetic equations for a single species of a monatomic gas by discretizing the
speed variable in an appropriate manner.

Following their lines, as a first step we restrict the range of the particle’s kinetic energies
to the interval Iν = [Em,EM), 0 < Em < EM < ∞. The bounds of Iν are to be chosen such
that all particles with kinetic energies outside of Iν may be neglected. Next we introduce an
arithmetical sequence of energies

Ei = Em + (i + 1
2 )δ i = 0, 1, . . . , n (14)

with δ = 2(EM − Em)/(n + 1) that are the centres of the subintervals (energy groups)

Ii =
[
Ei − δ

2
, Ei +

δ

2

]
i = 0, 1, . . . , n. (15)

Furthermore, we have to adapt the energy gap�E in such a way that it fits into the discretization
scheme. Therefore we set �E = qδ with q ∈ {1, 2, . . . , 2n − 1} which implies ε2 = 2qδ/m.
When apprearing as an integrand, any function of kinetic energy (and thus of the speed v) will
henceforth be approximated by a piecewise constant interpolant defined over the above-stated
discretization:

g(E) ≈
n∑

i=0

giχIi (E) (16)

where χB(.) denotes the characteristic function of the set B.
Each energy knot Ei corresponds to a speed vi = √

2Ei/m. Using this discrete set of
allowed speeds, we tackle the question which solid angles are compatible with a chosen pair
of pre-collisional (v, v∗) and post-collisional (v′, v′

∗) speeds that satisfy the conservation of
energy. The combination of conservation of momentum and total energy, i.e. equations (3)
and (4), yields

2v′v′
∗Ω̂

′ · Ω̂′
∗ = 2vv∗Ω̂ · Ω̂∗ ± ε2. (17)

Now the inequality |Ω̂′ · Ω̂′
∗| � 1 implies that when fixing Ω̂, the variation of the solid angle

Ω̂∗ is restricted to(
D̂∗
Ď∗

)
=
{
Ω̂∗ ∈ S

2

∣∣∣∣−v′v′
∗

vv∗
∓ ε2

2vv∗
� Ω̂ · Ω̂∗ � v′v′

∗
vv∗

∓ ε2

2vv∗

}
. (18)

Figure 1 shows a graphical representation of these sets. For elastic collisions (ε = 0), the inner
product Ω̂ · Ω̂∗ is symmetric with respect to zero. In this case we define D∗ = D̂∗ = Ď∗. For
inelastic excitation (D̂∗) and de-excitation (Ď∗) processes this is no longer true.

Furthermore, by introducing the angle ϑ between the pre-collisional and post-collisional
plane spanned by the pairs (g,R) and (g′,R), respectively, the surface element dn̂′ appearing
in the collision terms can be written as [9]

dn̂′ = 4

g′R
v′ dv′ dϑ. (19)

Now, we integrate equations (7a)–(7c) over one energy interval Ii with the appropriate
measure

√
2E/m3 dE = v2 dv and approximate all functions of kinetic energy by piecewise

constant interpolants (cf remark 3.4 in [9]). By following the considerations of section 4



A semi-continuous extended kinetic model 3421

Figure 1. Domains of Ω̂∗ as implied by the conservation of momentum for elastic scattering (a),
collisional de-excitation (b), and collisional excitation (c).

in [9], we obtain semi-continuous versions of the inelastic collision terms. If the cross section
is independent of the scattering angle, which we shall assume for simplicity, they read

Ji[f, f̌ , f̂ ] = C2
χ

n∑
j=0

vj

n∑
h,k=0

h+k=i+j+q

∫ 2π

0
dϑ
∫
Ď∗(vi ,vj ,vh)

dΩ̂∗Ǎhk
ij (Ω̂ · Ω̂∗)(f ′

hf̌
′
∗k − fif̂∗j )

+C2
χ

n∑
j=0

vj

n∑
h,k=0

h+k=i+j−q

∫ 2π

0
dϑ
∫
D̂∗(vi ,vj ,vh)

dΩ̂∗Âhk
ij (Ω̂ · Ω̂∗)(f ′

hf̂
′
∗k − fif̌∗j )

(20a)

J̌i[f, f̌ , f̂ ] = C2
χ

n∑
j=0

vj

n∑
h,k=0

h+k=i+j−q

∫ 2π

0
dϑ
∫
D̂∗(vi ,vj ,vh)

dΩ̂∗Âhk
ij (Ω̂ · Ω̂∗)(f̂ ′

hf
′
∗k − f̌if∗j )

(20b)

Ĵi[f, f̌ , f̂ ] = C2
χ

n∑
j=0

vj

n∑
h,k=0

h+k=i+j+q

∫ 2π

0
dϑ
∫
Ď∗(vi ,vj ,vh)

dΩ̂∗Ǎhk
ij (Ω̂ · Ω̂∗)(f̌ ′

hf
′
∗k − f̂if∗j )

(20c)

where Cχ = δ/m. The application of the same strategy to the elastic collision terms, i.e.
equation (9), yields

JNM
i [f N, f M ] = C2

χ

n∑
j=0

vj

n∑
h,k=0

h+k=i+j

∫ 2π

0
dϑ
∫
D∗(vi ,vj ,vh)

dΩ̂∗Ahk
ij (Ω̂ · Ω̂∗)(f N ′

h f M′
∗k − f N

i f M
∗j )

(21)

for N,M = A,B,B∗. The domain D̂∗(vi, vj , vh) takes into account the threshold g �
√

2ε
for collisional excitations. We have used the shorthand notations

f N
i = f N

i (Ω̂) = f N(viΩ̂) f N
∗j = f N

j (Ω̂∗) = f N(vj Ω̂∗)
f N ′
h = f N

h (Ω̂′) = f N(vhΩ̂′) f N ′
∗k = f N

k (Ω̂′
∗) = f N(vkΩ̂′

∗)
(22)

where N = A,B,B∗. Post-collisional solid angles are functions of pre-collisional solid
angles, of the speeds vi, vj , and vh and of the angle ϑ . The kernels are given by

Ahk
ij (Ω̂ · Ω̂∗) = 4σ(g)

R
Âhk

ij (Ω̂ · Ω̂∗) = 4g

g−
σ̂ (g)

R
Ǎhk

ij (Ω̂ · Ω̂∗) = 4g

g+

σ̌ (g)

R
. (23)

In these formulae, the quantities g, g± and R have to be evaluated at the speed knots,

g =
√
v2
i + v2

j − 2vivj Ω̂ · Ω̂∗ R =
√
v2
i + v2

j + 2vivj Ω̂ · Ω̂∗ (24)
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and so on for g+ and g−. By applying the same strategy to the streaming part of the Boltzmann
equations and equating the result to the above-stated collision terms, we obtain the semi-
continuous kinetic equations

∂fi

∂t
+ viΩ̂

∂fi

∂x
= Ji + JAA

i + JAB
i + JAB∗

i (25a)

∂f̌i

∂t
+ viΩ̂

∂f̌i

∂x
= J̌i − Ri (I ) + JBB

i + JBA
i + JBB∗

i (25b)

∂f̂i

∂t
+ viΩ̂

∂f̂i

∂x
= Ĵi + Ri (I ) + JB∗B∗

i + JB∗A
i + JB∗B

i (25c)

with Ri (I ) being defined as equation (11) evaluated at the speed knot i, i.e. for f̌i(Ω̂) and
f̂i(Ω̂). The photon transport equation now reads

∂I

∂t
+ cΩ̂ · ∂I

∂x
= ∂IL

∂t
− c�E(βI ň − (α + βI)n̂). (26)

In the semi-continuous formulation, the macroscopic quantities of each species N , namely
particle density, the mean velocity, the momentum flux, and the kinetic energy flux are
respectively given by

nN = Cχ

n∑
i=0

vi

∫
S2

f N
i (Ω̂) dΩ̂ (27a)

uN = Cχ

nN

n∑
i=0

v2
i

∫
S2

Ω̂f N
i (Ω̂) dΩ̂ (27b)

K
N = Cχm

n∑
i=0

v3
i

∫
S2

Ω̂ ⊗ Ω̂f N
i (Ω̂) dΩ̂ (27c)

QN = Cχm

2

n∑
i=0

v4
i

∫
S2

Ω̂f N
i (Ω̂) dΩ̂. (27d)

The kinetic energy density of species N is given by the trace kN = (1/2) tr K
N . The total

energy density e of the gas is the sum of the kinetic energy densities plus the internal energy
density of B∗:

e = kA + kB + kB∗
+ nB∗

�E. (28)

By using these definitions, we can integrate equations (25a)–(25c) and (26) to obtain the
macroscopic equations for the semi-continuous model:

∂n

∂t
+

∂

∂x
· (nu) = 0 (29a)

∂

∂t
(ň + n̂) +

∂

∂x
· (ňǔ + n̂û) = 0 (29b)

m
∂

∂t
(ňǔ + n̂û + nu) +

∂

∂x
· (K + Ǩ + K̂) = 0 (29c)

∂

∂t
(e + eν) +

∂

∂x
· (Q + Q̌ + Q̂ + Qν) = ∂SL

∂t
. (29d)

They reflect the conservation of particles A, B plus B∗, the conservation of total momentum
and injection of energy due to external light sources. The proof of these macroscopic equations
involves important properties of the collision terms and is presented in the following section.
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4. Properties of the semi-continuous collision terms

We will now summarize some major aspects of binary collisions in a semi-continuous velocity
space (cf [9]). First of all, the microreversibility conditions for inelastic scattering, i.e.
equations (8) imply the identities

Ǎ
ij

hk(Ω̂
′ · Ω̂′

∗) = Âhk
ij (Ω̂ · Ω̂∗) Â

ij

hk(Ω̂
′ · Ω̂′

∗) = Ǎhk
ij (Ω̂ · Ω̂∗) (30)

that are generalizations of the relation valid for the elastic kernels:

A
ij

hk(Ω̂
′ · Ω̂′

∗) = Ahk
ij (Ω̂ · Ω̂∗). (31)

Equations (30) and (31) constitute the appropriate microreversibility conditions for the semi-
continuous model. Furthermore, the symmetry properties

Ahk
ij (Ω̂ · Ω̂∗) = Akh

ji (Ω̂∗ · Ω̂) (32)

are also valid in the inelastic case, i.e. for Ǎhk
ij and Âhk

ij .
For fixed speeds v, v∗, v′ and v′

∗ and for a fixed angle ϑ between the pre- and post-
collisional plane, collisional de-excitations map the solid angles (Ω̂, Ω̂∗) ∈ S

2 × Ď∗(v, v∗, v′)
to (Ω̂′, Ω̂′

∗) ∈ S
2 × D̂∗(v′, v′

∗, v). Conversely, excitation events relate (Ω̂, Ω̂∗) ∈ S
2 ×

D̂∗(v, v∗, v′) to (Ω̂′, Ω̂′
∗) ∈ S

2 × Ď∗(v′, v′
∗, v). Due to microreversibility, these maps are

bijections. The Jacobian of these maps for both elastic and inelastic collisions is given by

∂(Ω̂′, Ω̂′
∗)

∂(Ω̂ , Ω̂∗)
= vv∗

v′v′∗
. (33)

For elastic collisions, the proof of this relation is given in [9]. Since this proof mainly
involves the conservation of momentum that is valid also for inelastic collisions, we refer
to proposition 2.4 in [9] and skip the repetition of the proof here.

For a set of arbitrary functions ϕN
i (Ω̂), N = A,B,B∗ we introduce the notation

〈ϕN, f N 〉 = Cχ

n∑
i=0

vi

∫
S2

dΩ̂ϕN
i (Ω̂)f N

i (Ω̂).

Now we can state the main properties of the model. First, the expression

〈〈ϕ,J〉〉 ≡ 〈ϕ,J + JAA + JAB + JAB∗ 〉
+〈ϕ̌, J̌ + JBB + JBA + JBB∗ 〉 + 〈ϕ̂, Ĵ + JB∗B∗

+ JB∗A + JB∗B〉 (34)

vanishes for the choices ϕi = 1, ϕ̌i = ϕ̂i = 0; ϕi = 0, ϕ̌i = ϕ̂i = 1; ϕi = ϕ̌i = ϕ̂i = viΩ̂
and ϕi = ϕ̌i = v2

i , ϕ̂i = v2
i + ε2. They correspond to the conservation and balance equations

stated in equations (29a)–(29d). Furthermore, we obtain a space homogeneous H-theorem by
setting ϕN

i = log f N
i . It reads

∂H

∂t
≡ 〈〈log f,J〉〉 � 0. (35)

This H-function is zero (collisional equilibrium of the gas mixture) if and only if

f N
i (Ω̂) = AN exp(vib · Ω̂ − cv2

i ) (36)

with the constants AN, b, and c = m/(2kBT ), where T is the temperature and kB denotes
Boltzmann’s constant. The ratio between the densities of B∗ and B reads

n̂

ň
= exp

(
−�E

kBT

)
(37)
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which is exactly Boltzmann’s formula. Finally, in the absence of external light sources, the
equilibrium intensity is given by Planck’s law [3]

I = α/β

exp(�E/(kBT )) − 1
. (38)

Since the bracket 〈ϕ, f 〉 is linear in its second argument, we can discuss the various terms
in equation (34) separately. We start with the discussion of the elastic collision terms JNM .
For an arbitrary set of functions ϕN

i (Ω̂) we obtain by exchanging i ↔ h, Ω̂ ↔ Ω̂′ and j ↔ k,
Ω̂∗ ↔ Ω̂′

∗ in the gain term, applying equation (31) and transforming back to pre-collisional
solid angles using equation (33)

〈ϕN, JNM〉 = C3
χ

n∑
i,j,h,k=0

h+k=i+j

vivj

∫ 2π

0
dϑ

∫ ∫
S2×D∗(vi ,vj ,vh)

dΩ̂ dΩ̂∗ Ahk
ij (Ω̂ · Ω̂∗)

×f N
i (Ω̂)f M

j (Ω̂∗)(ϕN
h (Ω̂′) − ϕN

i (Ω̂)) (39)

which forϕN
i (Ω̂) = 1 immediately shows the conservation of the particlesN . The conservation

of momentum and energy is implied by

〈ϕN, JNM〉 + 〈ϕM, JMN 〉 = 0 (40)

which is valid for ϕN
i (Ω̂) = ϕM

i (Ω̂) = viΩ̂ and ϕN
i (Ω̂) = ϕM

i (Ω̂) = v2
i , respectively.

This can be seen by exchanging i ↔ j , Ω̂ ↔ Ω̂∗ and h ↔ k, Ω̂′ ↔ Ω̂′
∗ in the second

term of equation (40), applying the symmetry property (32) and taking into account detailed
conservation of momentum and energy.

For the space homogeneous case, an H-functional is derived by setting ϕN
i (Ω̂) =

log f N
i (Ω̂) and performing the same changes in the second term of equation (40). By

exchanging pre- and post-collisional quantities and transforming back the integrals using
equation (33), we can symmetrize the result to obtain

ḢNM = 〈log f N, JNM〉 + 〈log fM, JMN 〉

= C3
χ

2

n∑
i,j,h,k=0

h+k=i+j

vivj

∫ 2π

0
dϑ

∫ ∫
S2×D(vi ,vj ,vh)

dΩ̂ dΩ̂∗Ahk
ij (Ω̂ · Ω̂∗)

×(f N
i (Ω̂)f M

j (Ω̂∗) − f N
h (Ω̂′)f M

k (Ω̂′
∗)) log

(
ϕN
h (Ω̂′)ϕM

k (Ω̂′
∗)

ϕN
i (Ω̂)ϕM

j (Ω̂∗)

)

� 0. (41)

For collisional equilibrium, we first refer to theorem 5.2 of [9] that states that the equal sign
applies in ḢNN � 0 if and only if f N

i (Ω̂) is a Maxwellian of the form

f N
i (Ω̂) = AN exp(vib

N · Ω̂ − cNv2
i ) (42)

with parameters AN, bN , and cN . The further condition ḢNM = 0 is fulfilled if and only if
additionally bN = bM and cN = cM . As in continuous kinetic theory, the elastic collision
terms of the mixture ensure equal drift velocity and temperature for all species in equilibrium.

Now we treat the brackets involving the inelastic collision integrals. For arbitrary
functions ϕi(Ω̂), ϕ̂i(Ω̂) and ϕ̌i(Ω̂), by means of the same manipulations we obtain

〈ϕ,J 〉 = C3
χ

n∑
i,j,h,k=0

h+k=i+j+q

vivj

∫ 2π

0
dϑ
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×
∫ ∫

S2×Ď∗(vi ,vj ,vh)

dΩ̂ dΩ̂∗Ǎhk
ij (Ω̂ · Ω̂∗)fi(Ω̂)f̂j (Ω̂∗)(ϕh(Ω̂′) − ϕi(Ω̂))

+C3
χ

n∑
i,j,h,k=0

h+k=i+j−q

vivj

∫ 2π

0
dϑ

×
∫ ∫

S2×D̂∗(vi ,vj ,vh)

dΩ̂ dΩ̂∗Âhk
ij (Ω̂ · Ω̂∗)fi(Ω̂)f̌j (Ω̂∗)(ϕh(Ω̂′) − ϕi(Ω̂)) (43a)

〈ϕ̌, J̌ 〉 = C3
χ

n∑
i,j,h,k=0

h+k=i+j+q

vivj

∫ 2π

0
dϑ

×
∫ ∫

S2×Ď∗(vi ,vj ,vh)

dΩ̂ dΩ̂∗Ǎhk
ij (Ω̂ · Ω̂∗)ϕ̌k(Ω̂′

∗)f̂j (Ω̂∗)fi(Ω̂)

−C3
χ

n∑
i,j,h,k=0

h+k=i+j−q

vivj

∫ 2π

0
dϑ

×
∫ ∫

S2×D̂∗(vi ,vj ,vh)

dΩ̂ dΩ̂∗Âhk
ij (Ω̂ · Ω̂∗)ϕ̌j (Ω̂∗)f̌j (Ω̂∗)fi(Ω̂) (43b)

〈ϕ̂, Ĵ 〉 = C3
χ

n∑
i,j,h,k=0

h+k=i+j−q

vivj

∫ 2π

0
dϑ

×
∫ ∫

S2×D̂∗(vi ,vj ,vh)

dΩ̂ dΩ̂∗Âhk
ij (Ω̂ · Ω̂∗)ϕ̂k(Ω̂′

∗)f̌j (Ω̂∗)fi(Ω̂)

−C3
χ

n∑
i,j,h,k=0

h+k=i+j+q

vivj

∫ 2π

0
dϑ

×
∫ ∫

S2×Ď∗(vi ,vj ,vh)

dΩ̂ dΩ̂∗Ǎhk
ij (Ω̂ · Ω̂∗)ϕ̂j (Ω̂∗)f̂j (Ω̂∗)fi(Ω̂). (43c)

In equations (43b) and (43c), we have additionally exchanged the indices i ↔ j and h ↔ k

as well as Ω̂ ↔ Ω̂∗, Ω̂′ ↔ Ω̂′
∗ which leaves the expressions unaltered.

Now, equation (43a) vanishes for ϕi(Ω̂) = 1 which corresponds to the conservation of
particles A. Furthermore, 〈ϕ̌, J̌ 〉 + 〈ϕ̂, Ĵ 〉 = 0 for ϕ̌i(Ω̂) = ϕ̂i(Ω̂) = 1 which reflects the
conservation of the sum of particles B plus B∗.

In order to show the conservation of total momentum, we set ϕi(Ω̂) = ϕ̌i(Ω̂) = ϕ̂i(Ω̂) =
viΩ̂. From detailed conservation of momentum and equations (43a)–(43c) follows

〈ϕ,J 〉 + 〈ϕ̌, J̌ 〉 + 〈ϕ̂, Ĵ 〉 = 0. (44)

The same identity holds for ϕi(Ω̂) = ϕ̌i(Ω̂) = v2
i , ϕ̂i(Ω̂) = v2

i + ε2 which ensures the
conservation of total energy.

We obtain an H-functional by putting ϕN
i (Ω̂) = log f N

i (Ω̂), N = A,B,B∗. In fact,
by transforming pre-collisional quantities to post-collisional ones in all terms involving
Âhk

ij (Ω̂ · Ω̂∗) in equations (43a)–(43c) and by consequently eliminating Â
ij

hk(Ω̂
′ · Ω̂′

∗) by means
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of equation (30) we obtain

Ḣ ≡ 〈log f,J 〉 + 〈log f̌ , J̌ 〉 + 〈log f̂ , Ĵ 〉

= C3
χ

n∑
i,j,h,k=0

h+k=i+j+q

vivj

∫ 2π

0
dϑ

∫ ∫
S2×Ď∗(vi ,vj ,vh)

dΩ̂ dΩ̂∗Ǎhk
ij (Ω̂ · Ω̂∗)

×(fi(Ω̂)f̂j (Ω̂∗) − fh(Ω̂∗)f̌k(Ω̂′
∗)) log

(
fh(Ω̂′)f̌k(Ω̂′

∗)

fi(Ω̂)f̂j (Ω̂∗)

)

� 0. (45)

The equal sign applies if and only if fi(Ω̂)f̂j (Ω̂∗) = fh(Ω̂′)f̌k(Ω̂′
∗). Now, Maxwellian

distributions with equal parameters for all species are the stationary solutions of the elastic
scattering terms. Inserting equation (36) into Ḣ = 0 and observing ε2 = v2

h + v2
k − v2

i − v2
j

yields Boltzmann’s formula as stated in equation (37).
Planck’s law [3], i.e. equation (38), can be obtained from this result by inserting

equation (37) into a stationary (∂I/∂t = 0, IL = 0) and space homogeneous (∂I/∂x = 0)
version of equation (26).

5. Numerical solutions

In this section we present some numerical results of the semi-continuous model. For simplicity
we confine ourselves to the case of a spatially homogeneous and isotropic gas mixture. At
this level we study the impact of a monochromatic laser pulse on the shape of the distribution
functions of the gas mixture. The results demonstrate the power and practical usefulness of
the model.

For the numerical simulations we implement a P0 approximation of the semi-continuous
kinetic equations. This is done by means of the ansatz

f N
i (Ω̂) = 1

4πvi
nN
i . (46)

Apart from the multiplicative constant Cχ , the quantities

nN
i = vi

∫
S2

f N
i (Ω̂) dΩ̂ (47)

represent the number of particles N , N = A,B and B∗, within the energy group Ii .
The evolution equations for the quantities ni, ňi , n̂i and eR are obtained by integrating
equations (25a)–(25c) and (26) with respect to Ω̂:

dni

dt
= Qi + QAA

i + QAB
i + QAB∗

i (48a)

dňi

dt
= Q̌i − Si + QBB

i + QBA
i + QBB∗

i (48b)

dn̂i

dt
= Q̂i + Si + QB∗B∗

i + QB∗A
i + QB∗B

i (48c)

deR
dt

= dSL

dt
− Cχ�E

n∑
i=0

Si . (48d)

These equations form a set of coupled ordinary differential equations. Here the coupling of
the gas particles with the radiation field reads Si = βceRňi − (α + βceR)n̂i and the integrated
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collision terms are given by

Qi = C2
χ

2

n∑
j=0

{ n∑
h,k=0

h+k=i+j+q

(Î
ij

hknhňk − Ǐ hk
ij ni n̂j ) +

n∑
h,k=0

h+k=i+j−q

(Ǐ
ij

hknhn̂k − Î hk
ij ni ňj )

}
(49a)

Q̌i = C2
χ

2

n∑
j=0

n∑
h,k=0

h+k=i+j−q

(Ǐ
ij

hkn̂hnk − Î hk
ij ňinj ) (49b)

Q̂i = C2
χ

2

n∑
j=0

n∑
h,k=0

h+k=i+j+q

(Î
ij

hkňhnk − Ǐ hk
ij n̂inj ) (49c)

QNM
i = C2

χ

2

n∑
j=0

n∑
h,k=0

h+k=i+j

(I
ij

hkn
N
h nM

k − Ihk
ij nN

i nM
j ) (49d)

with the integrated cross sections

Ǐ hk
ij = 2π

∫ v1

v0

Ǎhk
ij (v) dv Î hk

ij = 2π
∫ u1

u0

Âhk
ij (u) du Ihk

ij = 2π
∫ x

−x

Ahk
ij (y) dy.

(50)

The domains of integration (u0, u1), (v0, v1), and (−x, x) coincide with the bounds of the
product Ω̂ · Ω̂∗ as given in equation (18). The gain terms in equations (49a)–(49d) have been
evaluated by exchanging the integration over pre-collisional solid angles with integration over
post-collisional solid angles taking into account equations (30) and (33). The microreversibility
conditions, i.e. equations (30), imply for the integrated cross sections

I
ij

hk = vhvk

vivj
I hk
ij Ǐ

ij

hk = vhvk

vivj
Î hk
ij . (51)

In order to study relaxation phenomena, equations (48a)–(48d) are solved numerically.
Due to the high speed of light, c ≈ 3 × 108 m s−1, the radiation originating from emission
and absorption processes of gas particles is always very close to its equilibrium value. Thus,
we approximate it by Planck’s law. For the calculation, we fix the following parameters:
α = 105 s−1, β = 107 m2 J

−1
, m = 44 amu, nB + nB∗ = 2.5 × 1022 m−3, �E = 0.27 eV,

σ̌ (g) = 5 × 10−17 m3 s
−1

/g. For the dominant species A we choose three different densities,
namely 2.5 × 1023 m−3 (low density), 2.5 × 1024 m−3 (medium density), and 2.5 × 1025 m−3

(high density).
The following scenario is considered. At time t = 0, the gas mixture is in thermal

equilibrium with the radiation field at temperature T = 293 K. Then a laser pulse supplies
additional photons. Its intensity is given by the function IL(t) = I0(t/τL) exp(−(t/τL)

2) with
I0 = 100 W m−2 and τL = 5 ns. A fraction of these photons is absorbed by species B yielding
B∗. The excited particles B∗ interact inelastically with particles A in collisional de-excitation
events (cf figure 3).

The high energy released in such a process causes a distortion of the distribution functions.
The actual deviation of the particle distribution functions from a Maxwellian depends critically
on the assumed cross section σ and is most pronounced for species B. Figure 2 shows
the distribution function of particles B at different instants of time for Maxwell molecules
(σ(g) = 5 × 10−17 m3 s

−1
/g) and a low density of particles A (figure 3). The deformation

can be seen best for t = 30 ns in figure 2.
The equivalent simulation for a hard sphere gas (diameter 3.5 Å) does not show such

significant deviations from mechanical equilibrium. The reason is that for hard sphere particles
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Figure 2. Evolution of species B. The left plot shows the first 8 ns where the laser pulse excites
the particles and the number of B decreases. The right plot displays the re-apprearence of these
particles due to inelastic collisions. Note the obvious deviation from a Maxwellian distribution.
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Figure 3. Evolution of species B∗ (left) and species A (right). Due to de-excitation processes the
number density of species B∗ decreases in the course of time. The distribution of particles A is
shifted towards higher energies as a consequence of the conversion of internal into kinetic energy.

the collision frequency increases with relative speed and consequently the depletion of the tails
is accelerated.

On the other hand, the macroscopic quantities (excitation, energy, kinetic energy) of the
gas mixture as depicted in figure 4 are relatively unaffected by the choice of the elastic cross
section. The curves calculated for hard sphere molecules virtually coincide with those obtained
for Maxwell molecules. The excitation is slightly smaller for hard sphere molecules because of
the more efficient Maxwellization of the tails. Consequently, the laser can inject more energy
into a hard sphere gas mixture (right column of figure 4) as can be seen best for a medium
density of species A.

Furthermore, figure 4 illustrates how the relaxational behaviour depends on the density
of particles A. A lower density of this species leads to less collisional de-excitation events
per unit time and therefore greater relaxation times are observed. For the same reason, the
excitation (ratio nB∗

/nB) reaches much higher values for low densities of A than for high ones.
In the latter case, internal energy is converted to kinetic energy much more efficiently than in
the former.
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Figure 4. Temporal evolution of macroscopic quantities of the gas mixture for low density (top),
medium density (middle) and high density (bottom) of species A. The left column shows the
excitation (ratio nB∗

/nB ) and the intensity of the laser pulse (in arbitrary units) whereas the right
column displays the evolution of the kinetic and the total energy density of the gas mixture.

6. Conclusion

We have established a semi-continuous formulation of the extended Boltzmann equations
describing a gas mixture that comprises one species of structureless particles and one species
of two-level atoms. By collisional excitation, the system can transfer kinetic energy to one
internal degree of freedom. The interaction with monochromatic photons that can also trigger
such excitation events is taken into account.

The semi-continuous model reflects the major properties (H-theorem and conservation
laws) of the full continuous kinetic description. Moreover, Planck’s law of radiation is
recovered as the self-consistent equilibrium photon intensity.
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We have applied the semi-continuous model to calculate numerically the reaction of the
gas mixture to a strong coherent laser pulse. At the level of the distribution functions, we have
found different degrees of deviation from Maxwellians due to fast collisional de-excitation
processes. The deviations are most pronounced for the ground state of the two-level atom if
the mixture is treated as Maxwell molecules. For hard spheres, only minor deviations from
mechanical equilibrium are observed.

We would like to emphasize the practical usefulness of the semi-continuous model for
numerical calculations. Spatially dependent simulations are scheduled as future work.
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